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ABSTRACT

Integrative, object-like displays have been advocated for presenting multi-
dimensional system data. In this research, tro experiments assessed the
relative merits of integral and separable displays to enhance information
processing ability when the identity of an instance of sygtem data is uncer-
tain. In each experiment, thirty subjects, equally divided into three
groups, were trained to classify instances of system state into one of four
state categories using a Configural display, a Bargraph display, or a Digi-
tal display. In Experiment 1, the distribution of instances from the range
of possibilities within a state category were uniform; in Experiment 2, the
distribution was biased toward those instances of highly uncertain state
category membership. After training, subjects received exEenaea practice
classifying instances. In both experimentS, uncertainty was found to have
the greatest impact on the time to classify an instance of system data. In
Experiment 1, the Bargraph display was consistently superior under all cor-
ditions of uncertainty. The Configural display was found to be superior to
the Digital display under conditions of low uncertainty, while the Digital
display was superior to the Configural display under conditions of high un-
certainty. In Experiment 2, the superiority of the Bargraph display dimin-
ished, producing results equivalent to those of zhe Digital display; perfor-
mance with the Configural display was worse than either of the other two
displays. The impact of uncertainty on classification performance is dis-
cussed, especially in terms of mapping of display elements to system-state
categories.

This research was supported .i. U.S. Army Human Engineering Laboratory Con-
tract No. DAAA15-85-K-0010 to the first author. Requests for reprints
should be sent to Bruce G. Coury, Dept. of Industrial Engineering and Opera-
tions Research, University of Massachusetts, 114 Marston Hall, Amherst, MA
01003.
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INTRODUCTION

An operator's task, whether it be simple or complex, is comprised of

two fundamental components (Rasmussen, 1986, 1988): 1) identifying the

state of the system; and 2) selecting the appropriate course of action.

Even as advanced technology and automated control systems provide the capa-

bility to integrate and summarize data, the operator must still understand

the relationship between displayed values of system variables and the behav-

ior of the system (Rasmussen, 1986, 1988; de Kleer and Brown, 1983). In

fact, the introduction of automated control and decision aiding systems has

increased, rather than decreased, the need for effective display design (Ni-

ckerson, 1986; Norman and Draper, 1986; Shneiderman, 1987; Hendler, 1988).

Consequently, one of the major challenges facing designers of operator

interfaces for complex systems is that of selecting the appropriate display

representation of system-status information. The research reported in this

paper focuses on identification of system state, and examines the conditions

under which a particular type of display enhances the accurate and timely

assessment of the status of a system.

A Model of Operator Decision Making

Selecting the best display format for identification of system state

can be aided by a model of operator performance that establishes a framework

for assessing task demands. The model of the operator used in this research

is based upon a number of approaches to operator performance (Miller, 1985;

Rasmussen, 1986, 1988)) and user interaction with computer systems (Norman

and Draper, 1986; Olson, 1987), as well as current theories of inductive

reasoning (Holland, Holyoke, Nisbett and Thagard, 1986). Fundamental to
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those approaches and the model employed in this research is the assumption

that identification of system state is equivalent to the determination of

the current state of a decision problem, and is the prerequisite step to

selecting the best course of action.

Determination of the state of a decision problem has been a critical

and extensively researched component of effective decision making perform-

ance (Green and Swets, 1966; Holland et al., 1986) and a basic component of

all types of decision aids (Sprague and Carlson,,1982; Miller, 1985; Henne-

man, 1988). Consequently, the operator's ability to map the values of crit-

ical decision variables to known definitions of decision states is the foun-

dation for effective operator decision making performance, especially when

system data must be integrated from a number of information sources, (Hol-

land et al., 1986; Rasmussen, 1986, 1988).

Accurate identification of system state presupposes, however, that the

the operator possess a well developed internal model of the criteria defin-

ing system-state categories. Thus, our model of operator performance views

identification of system state as a categorization process, an approach con-

sistent with current theories of human reasoning (Holland et al., 1986),

concept learning (Smith and Medin, 1981), and the processing of information

and structure (Garner, 1974, 1980; Pomerantz, Pristach and Carson, 1987).

In our model of operator decision making, a system-state category is defined

by a set of weighted attributes that serve as decision variables. An in-

stance of a decision state is a specific set of values of decision variables

from a particular state category. Operator performance is dependent upon an
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ability to match the data from each information source to an internal model

defining state category membership.

In relatively simple operator tasks, the mapping of values to system-

state categories is straightforward. Decision making becomes complex when

that mapping is not straightforward and the correct decision Is not immedia-

tely apparent. In such decision making environments, uncertainty arises

because the values of system variables (be they single, direct readings of

gauges or integrated measures of subsystem function) do not uniquely define

a specific system-state.

Thus, uncertainty is a function of the degree of correspondence between

the displayed values of current system status and the values of the attri-

butes that define a specific system-state category. The degree of corres-

pondence defines the diagnosticity of system variables. Combinations of

values that uniquely define a state category are said to have high diagnos-

tic value; conversely, data that do not uniquely define a state category are

low in diagnostic value. In this research, then, diagnosticity and uncer-

tainty are inversely related: combinations of values of system variables

that are low in diagnosticity create conditions of high uncertainty for the

operator.

There is considerable evidence to suggest, however, that the operator's

ability to effectively monitor and dnfininis finlii.rp in a system i.n d pn-

ent upon the way in which information is displayed (Barnett and Wickens,

1988; Carswell and Wickens, 1987; Coury, Boulette, Zubritzky and Fisher,

1986; Boulette, Coury and Bezar, 1987; Woods, Wise and Hanes, 1981). For
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instance, in a recent study, Coury and Pietras (1989) found that the inform-

ation necessary for supervising a simulated fluid processing plant operating

in a normal mode was significantly different from the information required

to control a failing process plant. Furthermore, the way in which informa-

tion and data were presented to operators had a significant impact on their

ability to effectively control the system and accommodate the disruptive ef-

fect of failuros. Of particular interest was the fact that operators signi-

ficantly altered their information gathering strategies when data and infor-

mation were displayed in suboptimal form.

Integral and Separable Displays

There have been many recent studies that have addressed the relative

merits of different types of display formats. The results of many of those

studies support the use of integrative, object-like displays as a means for

enhancing operator performance (Carswell and Wickens, 1987; Coury et al.,

1986; Woods, Wise and Hanes, 1981). Such displays appear to be especially

effective in situations where the decision problem faced by the operator is

multidimensional and the values of the decision variables are correlated

(Jacob, Egeth, and Bevan, 1976; Goldsmith and Schvaneveldt, 1984; Wickens,

1986). Indeed, there is substantial evidence to suggest that object di.-

plays are superior to alphanumeric displays in many applications where iden-

tification of system state requires intezrating data from a nmmber of infor-

mation sources (Casey, 1986; Carswell and Vickens, 1987; Wickens, 1186).

The superiority of object displays has been attributed, in part, to the

perceptual cues and redundant information inherent in such representations

(Garner, 1974, 1980; Pomerantz, Pristach and Carson, 1987). The redundancy
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and perceptual cues can be used by an operator to simplify classification of

system data by associating a unique object configuration or set of salient

features to a specific system-state category. The mapping of objects or

features to a state category occurs when the values of system variables are

correlated with a particular state category, and the physical representation

of those values of system variables creates a configuration with a unique

size, shape or orientation. Consequently, the operator need not attend to

specific values of system variables, but can rely on rapid, possibly holis-

tic, integral processing of an object-like configuration or set of salient

features to determine the state of the system. In terms of multiple-

resource theory (Wickens, 1984), object displays produce a spatial code that

allows integral processing of system data.

Alphanumeric displays and tabular formats, on the other hand, require

the operator to attend to each individual system variable and serially pro-

cess system data as a verbal code. Since separable displays require mental

manipulation of numerical values to determine category membership, the un-

derlying correlational structure of system data (as defined by Garner, 1974)

is not as readily apparent and, presumably, requires more processing time

than a more integral display. Consequently, many researchers have concluded

that the appropriate display format of sysLem data is dependent upon the un-

derlying statistical properties of data in a task (roldsmith and Schvane-

veldt, 1984; Wi-kens. 1986).

In general, however, previous research has been equivocal on the exact

nature and form of the relationship between the statistical properties of

data in a task and its physical representation. Goldsmith and Schvaneveldt
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(1984) have shown that an integral representation (an object display) is

consistently superior to a separable representation (a bargraph display) in

a multi-cue criterion-judgment task. Casey (1986), on the other hand, has

shown that a bargraph display is superior to an object (polygon) display

when the operator is required to focus attention on a single, critical di-

mension in a detection and diagnosis task. Carswell and Wickens (1987) have

further demonstrated that an object display (in the form of a triangle) is

superior to a separable display (a bargraph) when integration of data is re-

quired, but that the superiority disappears when the task requires focusing

attention on a single data source. None of those studies, however, directly

addressed identification of system state as a categorization prucess.

In addition, indirect evidence suggests that tasks that require focused

attention on a single dimension or attribute of displayed information are

best represented by a separable display (Garner, 1974; Wickens, 1986), espe-

cially when the task is primarily composed of detection or straightforward

decision making (Triesman and Gelade, 1980; Kahneman and Triesman, 1984).

In more complex situations, however, the need for both types of display for-

mats may be evidenced (Coury and Pietras, 1989).

The Impact of Uncertainty

Unfortunately, none of the previously cited studies nas directly ad-

dressed the fact that identification of system state is a categorization

process; none has specifically considered the importance of uncertainty in

the selection of displays. The firs. i.sue i- primarily concer!, "ith the

nature and characteristics of the operator's task and is formulated in terms

of Rasmussen's model of the operator.
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The second issue relates directly to object display superiority and in-

tegral proce-7ing of system data. The underlying uncertainty in the statis-

tical vio erties of a system-state identification may determine when the

ad-antages of an object display for presenting multidimensional, correlated

data may be nullified. For instance, if two fundamentally different system

states exhibit very similar diagnostic cues, the object displays for those

two states may be very similar in appearance. In such a situation, the

classification task becomes primarily one of discrimination, requiring the

operator to focus on specific values of system variables to distinguish

between the two states. Consequently, the superiority of an object display

may diminish when the state of the system is uncertain and identification of

system state requires that the display be decomposed into its individual

system variable values.

Few studies have directly addressed the issue of uncertainty, or sys-

tematically manipulated uncertainty to determine the conditions under which

separable and integral representations of correlated data are superior. In

fact, it appears quite possible that much of the research that has evaluated

the merits of integral and separable displays has failed to control for the

effects of uncertainty (as defined in this research).

Research Purpose and Rationale

The purpose of the experiments reported in rhi.- paper was to explore

the effects of uncertainty, and evaluate the impact of uncertainty on class-

ification performance when correlated, multidimensional system data are pre-

sented in either integral or separable form. Three types of displays were
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used in these experiments: a Configural display; a Digital display; and a

Bargraph display.

The Configural display (shown in Figure la) presents instances of sys-

tem data in integral form. The Configural display maps the values of system

variables defining a system state onto a single object-like configuration (a

polygon). The display allows the operator to classify system state by at-

tending to the overall shape or configuration of the display without attend-

ing to any specific value of a process variable. This allows the operator

to process the data as a spatial code.

The Digital display (shown in Figure 1b) presents the same system vari-

ables as independent values (i.e., separate digits). The Digital display is

a separable representation that maximizes the separation between process

variables, places emphasis on verbal coding of the data, and minimizes the

opportunity for configural properties to emerge.

The Bargraph display (shown in Figure lc) is used in this research as a

display format that can possess both separable and configural properties.

Numerous researchers have advocated the use of bargraphs as a separable dis-

play because each bar independently presents each variable of interest (Wic-

kens, 1986; Casey, 1986; Carswell and Wickens, 1987). In addition, the Bar-

graph display is amenable to verbal coding; e.g., the display shown in Fig-

tire 1c can be coded as "high-low-low-high". Tn fart, a rerent indistrv

guide for designing computer-generated displays recnmmends bar charts for

unidimensional data and comparison tasks, and discourages their use for mul-

tidimensional data in status and pattern recognition tasks (Frey and Sides,

1984, pg. 5-3). Such interpretations ignore, however, the real possibility
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that the Bargraph display can possess object-like properties. When used in

correlated tasks, the heights of the bars produce contours unique to a

system-state category, and the operator neLz only attend to the overall

shape of the Bargraph configuration to classify system state. Two recent

studies have reported on the configural properties of the bargraph display

(Coury and Purcell, 1988; Buttigieg, Sanderson and Flach, 1988).

INSERT FIGURE la, lb AND Ic

ABOUT HERE

To assess identitication of system-state as a categorization process, a

classification task using four system-state categories was constructed. Our

objective was twofold: create a task that was consistent with our model of

operator decision making; emphasize the essence and cognitive requirements

of the decision problems faced by an operator, rather than directly simulate

an actual system.

Consequently, a task was constructed that met two basic requirements:

1) there be a set of attributes and values of those attributes that would

map an instance of system data onto a specific state category; and 2) that

specific instances vary in uncertainty (i.e., diagnosticity). In addition,

the demands of the task would balance fidelity and learning; the decision

rules for accurate classification would not be trivial, but would, at the

same time, allow the task to be learned by untrained people in a reasonable

amount of time.
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The task used in these experiments defined system-state categories as

ranges of values along four dimensions. Each dimension represented a system

variable and a specific range of values for each system variable was combin-

ed to define a system-state category. The range of values defining each of

the four system states is presented in Table 1 (Q, M, B akd H are the labels

for the four system variables); overlapping values provided nondiagnostic

values for the process variables. That is, uncertainty was introduced by

creating an overlap (i.e., borderline condition) between state categories in

which one or more system variables could take on values that simultaneously

define more than one system state.

The borderline region represents an area of uncertainty about the iden-

tity of an instance of system state. One might expect, then, that as any

given instance of system data approached the borderline condition, the oper-

ator would need more precise information about that instance (i.e., have to

attend more closely to specific values of system variables). In such a sit-

uation, a display that can be easily partitioned into its individual compon-

ents (the Digital or Bargraph displays) may be superior to a display that

masks subtle differences between values of state variables (the Configural

display).

Conversely, when system-state is certain (i.e., when an instance of

system data is most characteristic of a specific state category), then a

display that allows integral processing of system data should be superior.

In these experiments, one can predict that the perceptual cues inherent in

the Configural display provide the most apparent association of system vari-
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ables to state categories in situations of low uncertainty and high diagnos-

ticity. One might also expect that the Bargraph display, because of its in-

tegral processing potential, to produce results equivalent to the Configural

display, or at the very least, intermediate results depending on the extent

to which operators use a integral or separable processing strategy for that

display.

Two experiments were conducted to evaluate the impact of integral and

separable displays of system data on classification performance. The pri-

mary purpose of Experiment 1 was to determine the extent to which uncertain-

ty and diagnosticity affects the processing of integral and separable dis-

plays of system data. Experiment 1 was also concerned with the effect of

extended practice on classification performance, since there is indirect

evidence suggesting that extended practice may result in very efficient

processing of information in classification tasks (Garner, 1974).

In the training session, operators were required to attain a prespeci-

fied classification accuracy criterion. The criterion was set to ensure

that the task was well learned and performance during the test sessions

would not be contaminated by inadequate understanding of the decision rules

defining category membership. Only those operators who reached criterion

were allowed to participate in all experimental sessions. This appeared to

be a reasonable performance expectation since ;vrlil operators are tvplcally

highly trained and very familiar with the system.

The purpose of Experiment 2 was to determine if additional exposure

during learning to instances of high uncertainty would improve classifi-

cation performance. The uniform distribution of instances of system state
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in Experiment 1 ensured that operators had equal exposure to the the full

range of category membership. It is possible, however, that an operator's

ability to effectively discriminate between state categories when uncertain-

ty is high requires that the operator have had considerable exposure to in-

stances of system data that are low in diagnosticity. Without sufficient

experience, one might expect performance on instances of high uncertainty to

be relatively worse than performance with the very certain instances, with

the differences between display types to be an artifact of learning. Conse-

quently, the distribution of instances of system-state in Experiment 2 was

biased toward the area of uncertainty within each state category; i.e., op-

erators were exposed to more instances of high uncertainty during learning

and extended practice in Experiment 2 than in Experiment 1.

METHODS: Experiment 1

Subjects

Thirty subjects, ranging in age from 18 to 40, participated in both the

training and extended practice sessions of Experiment 1. They were drawn

from the University of Massachusetts undergraduate and graduate student

population and the local community, ane they were paid $5.00 per hour for

participation. These subjects represent only those who reached a criterion

level of classificntion performance dutring tr ining and were allowed to com-

plete the entire experiment.

System State Categories

System state categories were defined in this experiment (as well as in

Experiment 2) as specific ranges of values across system variables. These
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ranges of values, along with the four system-state categories are shown in

Table 1.

The experimental stimulus set was comprised of 256 separate instances

of system data, with an equal number of instances from each of the four

state categories. The correlational structure of the state categories is

similar to a binary decision tree. State Categories 1 and 3 are character-

ized by the same ranges of values along variables B and H, as are State

Categories 2 and 4. Thus, information provided by values for variables B

and H systematically reduces the the possible system states to two. The

additional information provided by the values of variables 0 and M can be

used to determine the actual state category of an instance.

As explained in the Introduction, uncertainty was created with a bor-

derline, overlapping region where instances of system state could belong si-

multaneously to two state categories. The borderline condition represents

the transition of one system state to another. For example, an instance of

system data with values of 50, 50, 80 and 20, for variables 0, M, B, and H,

respectively, is possible in both System States 2 and 4 (but not 1 or 3),

and a response of State 2 or State 4 would be correct. Thus, the borderline

condition creates an area of overlap between two state categories where the

values of the two most critical variables are no longer diagnostic. The six

steps from the borderline were created by sygtematiralv manipulating the

diagnosticity and uniqueness of the values of process variables for a state

category. At Step 1, at least one of the critical variables was nondiagnos-

tic and the other variable was diagnostic (but set at a value close to the

range of values found in the overlapping system state). Steps 2 through 6
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manipulated the similarity of the process variables to the overlapping sys-

tem state. As distance from the borderline increased from Step 2 to Step 6,

the values of the process variables became increasingly different from both

the overlapping and non-overlapping state categories, producing combinations

of process variables that were unique to that state category.

System State Representations

Three types of display formats were used to present system data in this

experiment: an integral representation (the Configural display); a separ-

able representation (the Digital display); and a representation with the

potential for both separable and integral properties (the Bargraph display).

Examples of the representations are presented in Figures la, lb and ic.

Experimental Tasks

The subjects acted as "operators" whose task was to identify system

state. In this experiment, identification of system state required classi-

fying the displayed instances of system data into one of four state categor-

ies. The classification scheme required operators to integrate information

from the four system variables presented to them, and learn the decision

rules defining state categories.

Procedure

The experiment was divided into two sessions: training, and extended

practice. The classification learning technique employed by Coury and Drury

(1986) was adapted for use in this experiment.

Subjects were randomly assigned to one of the three display groups.

Without describing the underlying classification scheme, the experimenter
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reviewed with each subject the procedures, demonstrated the task, and ex-

plained the information provided by the feedback monitor. The feedback mon-

itor provided information regarding the accuracy of the response, the cor-

rect system state, and variable-specific information about state category

membership. At no time, however, did the subject receive specific informa-

tion about the possible range of values for each state category.

Training. During training, the "operators" classified the 256 instanc-

es of system data. Presentation of each instance constituted a training

trial. Each training trial followed the same pattern: presentation of an

instance of system data; the operator's response; and feedback on the accur-

acy of the response. The operator indicated his or her response by pressing

one of four keys on the keyboard corresponding to a state category. The

cycle was repeated until each subject had viewed all 256 trials in the stim-

ulus set.

Extended Practice. After a short break following the training session,

operators who had reached criterion returned to perform the second classi-

fication session. In this session, instances were presented to operators

using the same display format as in the training session. The stimulus set

was the same as used in the training session, but presented in a different

random order.

The classification task in both the Training and Pxtended Practpp Zpg-

sions was self-paced. Each trial was initiated by the operator, with the

instance of system data remaining displayed until the operator responded.

There was no restriction on the amount of time the feedback monitor could be

viewed during the Training session. A DEC Pro 300 series microcomputer was
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used to display stimuli and collect operator response data. The stimuli

were presented on a high resolution graphics, monochrome display, with a se-

cond monitor used to present feedback to operators.

Data Measurement

For each operator, response time and accuracy data for each trial in

both sessions was recorded. Reaction times were measured as the interval

between the onset of an instance of system data and the operator's response.

Only correct responses were used for analysis. Accuracy was defined as the

proportion of instances of system data correctly classified. Operators were

trained to a prespecified criterion. The criterion was 90% correct respons-

es in the last 100 trials of the training session.

Both reaction time and percent correct were summarized by averaging

across responses on 32 trials; thus, there were eight consecutive blocks of

data for each session. To evaluate the effect of uncertainty, an analysis

was performed on the response times for instances of system data occupying

predetermined incremental distances from the borderline condition. The in-

stances selected for analyses were at the borderline and the six steps away

from the borderline condition (as described in the System State Category

section); the six steps represented equal step sizes across the range of

category membership. Only times for correct responses were analyzed and the

results were averaged across state catezories.

Experimental Design and Analysis

The experiment was a multifactor repeated measures design with opera-

tors nested under display type. Display type was the between-subjects vari-
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able and Blocks of Trials were within-subject variables. Each of the depen-

dent measures for each session were subjected to a multifactor ANOVA. All

factors except operators were treated as fixed. A second ANOVA evaluated

the effect of uncertainty as a within subjects variable.

3. RESULTS: Experiment 1

Accuracy and Trials to Criterion

The operator's ability to accurately classify instances of data rapidly

improved during the first half of the Training session, reaching an asympto-

tic level by the end of the fourth block of trials. By the end of Training

and throughout the Extended Practice session accuracy stabilized at a level

greater than the prescribed criterion. The proportion of instances correct-

ly classified for each block of 32 trials for the three types of displays in

the Trz1ning and Extended Practice sessions is presented in Figure 2.

INSERT FIGURES 2a AND 2b

ABOUT HERE

The ANOVA of these data found no significant difference between display

types in the Training session, F(2,26) . .15, p - .862. There was, however,

a significant difference between display types in the Fxtended Practice ses-

sion, F(2, 26) = 4.66, p = .0186, although the difference in mean accuracy

between the best display (the Bargraph) and the worst display (the Configur-

al) was only 3.8 percent and all displays were well above criterion. The

significant improvement in classification accuracy in the Training session
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was reflected in the main effect of Blocks of Trials, F(7,14) = 48.71, p <

.0001. I the Extended Practice session, accuracy had stabilized above

criterion and the main effect of Blocks of Trials was no longer significant,

F(7,14) = .89, p = .517. All other main effects and interactions were not

significant.

Response Times: Training and Extended Practice

The Bargraph display produced the fastest response times in both the

Training and Extended Practice sessions; response times for the Digital

display group were slowest, with the Configural display producing intermed-

iate results. In addition, there was a major reduction in response times

across display types during the Training session, with a less pronounced

reduction in response times occurring in the Extended Practice session.

Mean response times for the three display types for both the Training and

Extended Practice sessions are presented in Figure 3.

INSERT FIGURES 3a AND 3b

ABOUT HERE

The ANOVA of the Training session response time data showed that the

effect of Display type to be significant, F(2,26) - 4.68, p - .0184, and

Blocks of Trials to be highly signifirant, F(7,14) = 17.02, p < .0001. The

ANOVA of the Extended Practice session showed the effect of Display type to

be highly significant, F(2,26) - 6.67, p = .005, and Blocks of Trials to be

highly significant, F(7,14) = 6.83, p < .0001.
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Distance from Borderline

The previous analyses did not consider the impact of uncertainty on

classification performance. To evaluate the effect of uncertainty, an anal-

ysis was performed on accuracy and response times to instances drawn from

the borderline and the six step sizes described in the Methods sections.

Classification accuracy for the three types of displays was found to be

affected by uncertainty (as defined by Distance from the Borderline). Oper-

ators made the greatest number of classification errors under conditions of

high uncertainty with greatest accuracy occurring under conditions of low

uncertainty. There was, however, no significant difference in classificat-

ion accuracy among the three display types. Mean accuracy for each display

type as a function of Distance from Borderline is presented in Table 2. The

ANOVA of these data found only the main effect of Distance from Borderline

to be significant, F(6,102) - 8.38, p < .001; all other main effects and in-

teractions were not significant.

Mean response times for the three types of displays as a function of

Distance from the Borderline are presented in Figure 4. Uncertainty (as de-

fined by Distance from the Borderline) had a significant effect on all three

display types; response times were slowest under conditions of high uncer-

tainty, and decreased monotonically as certainty increased. The ANOVA of

these data found the main effect of Di.plnv type to he significant, F(2,26)

= 7.52, p - .0027, as well as the Display type by Distance from Borderline

interaction, F(12,156) = 1.93, p = .0341. Analysis of the simple main ef-

fects of Distance from Borderline for each of the display types found the
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effect of uncertainty to be highly significant in the following way: Bar-

graph display, F(6,54) - 14.07, p < .0001; Configural display, F(6,48)

11.16, p < .0001; and the Digital display, F(6,54) - 4.49, p < .001.

INSERT FIGURES 4 and 5

ABOUT HERE

Contrasts between display types were found to be significant. Analysis

of the difference between the Configural display and the Bargraph display

revealed a significant simple main effect of Display type, F(1,17) = 5.79, p

- .0278, but no Display type by Distance from Borderline interaction, imply-

ing that the effect of uncertainty was additive for the Configural and Bar-

graph displays. The same analysis for the Configural and Digital display

found the Display type by Distance from the Borderline interaction to be

significant, F(6,102) - 2.59, p = .0223.

The interaction between the Configural and the Digital display appears

to be due to the differential effect of uncertainty on the two display

types; the Configural display produced significantly faster response times

than the Digital display under conditions of low uncertainty. As uncertain-

ty increased, however, the superiority of the Configural display diminished,

with the Digital display becoming superior to the Configural display near

the borderline condition.



Coury, Boulette and Smith
23.

DISCUSSION: Experiment 1

The results of this experiment clearly demonstrate the superiority of

the Bargraph display in a multidimensional, classification task. The Bar-

graph was, however, susceptible to the effects of uncertainty in much the

same way as the Configural and Digital displays. In all three cases, respo-

nse times significantly increased as uncertainty increased. In addition,

these results clearly showed the conditions under which the Configural dis-

play would be superior to the Digital display. When an instance was unmist-

akably a member of a particular category, an object-like representation (the

Configural display) clearly enhanced the operator's ability to process sys-

tem data and classify system state. Once uncertainty reached a certain

point and the diagnosticity of critical variables diminished, a more precise

representation of system data was necessary and the Digital display became

superior.

METHODS: Experiment 2

The methods and procedures used in Experiment 2 were the same as in Ex-

periment 1 except for a change in the distribution of instances across cate-

gory membership.

Subjects

Thirty subjects participated in bnrth the Training and Extended Practice

sessions of Experiment 2. They were drawn from the University of Massachus-

etts undergraduate and graduate student population and the local community,

and they were paid $5.00 per hour for participation. These subjects repre-



Coury, Boulette and Smith
24.

sent only those who reached criterion in the Training session and were al-

lowed to complete the entire experiment. The subjects ranged in age from 18

to 40.

System State Categories and Representations

System state categories used in this experiment were the same as thcse

used in Experiment 1 (see Table 1). In Experiment 2, subjects were exposed

to d greater number of instances from the borderline and near borderline

areas of a state category; this was accomplished by removing instances from

areas of low uncertainty in each of the state categories. The purpose of

this manipulation was to provide the subject with more experience classify-

ing instances of high uncertainty/low diagnosticity. Consequently, the sti-

mulus set in this experiment was comprised of 224 separate instances of sys-

tem data, with an equal number of instances from each of the four state cat-

egories. The instances were presented to subjects using the displays used

in Experiment 1.

Task and Procedure

The same task and procedure used in Experiment 1 was used in Experiment

2. Each subject participated in a Training and Extended Practice session,

with each session comprising 224 instances of system state. As in Experi-

ment 1, summarized data were submitted to ANOVA. In the Distance from Bor-

derline analysis, the biased distribution of instances of qystem state re-

sulted in response times occurring only in the borderline condition and in

step sizes 1, 2, 4 and 6.
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RESULTS: Experiment 2

Classification Accuracy

The operator's classification accuracy increased rapidly during the

first half of the training session, reaching asymptotic levels for all dis-

play types by the end of the fifth block of trials (Figure 6). Classifi-

cation accuracy data for the Training and Extended Practice Sessions in Exp-

eriment 2 are presented in Figure 6. The ANOVA showed that the main effect

of Blocks of Trials was highly significant during the Training session,

F(6,156) - 91.42, p < .0001. This pattern during the Training Session was

similar to the pattern found in Experiment 1.

INSERT FIGURE 6a AND 6b

ABOUT HERE

Classification accuracy was greatest for the Digital dicnlay with the

Configural and Bargraph display producing comparable performance, resulting

in a main effect of Display type approaching significance, F(2,26) = 2.98, p

= .068. By the last block of trials of training, however, the differences

between the most accurate and the least accurate display was only 1.2 per-

cent. Although classification accuracy with the Digital display appears to

reach criterion before the other displays (by the third block of trials

rather than the fifth block), the Display Type by Blocks of Trials interac-

tion is not significant, F(12,156) = .70.

By the end of Training and throughout the Extended Practice session ac-

curacy remained constant at a level greater than the prescribed criterion.
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The ANOVA of the accuracy data from the Extended Practice session found no

significant main effect of Display type or Blocks of Trials, and no Display

Type by Blocks of Trials interaction.

Response Times: Training and Practice

The greatest reduction in response times across trials was found during

the Training session (see Figure 7). Response times did, however, continue

to decline in the Extended Practice session, albeit at a much slower rate.

The ANOVAs of these data revealed a highly significant main effect of Blocks

of Trials in the Training session, F(6,156) - 33.89, p < .0001, and in the

Extended Practice session, F(6,156) - 7.94, p < .0001. The trend was the

same for all three displays since no significant effect of display type or

significant Display type by Blocks of Trials interaction was found in either

the Training session or in the Extended Practice session.

INSERT FIGURES 7a AND 7b

ABOUT HERE

Distance from Borderline

To evaluate the effect of uncertainty in Experiment 2, an analysis was

performed on classification accuracy and response times to instances occupy-

ing the borderline and four step sizes from the borderline described in the

Methods section. Analysis of the accuracy data (presented in Table 2) found

no significant differences between display types or interactions with Dis-

tance from the Borderline.
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Response times were, however, affected by uncertainty. In general, the

response times to the Configural display were slowest of the three displays,

with the Bargraph and Digital displays producing very similar response

times. Mean response times for the three display types as a function of

Distance from the Borderline are presented in Figure 5.

All three display types were significantly affected by uncertainty; op-

erators produced their fastest response times under conditions of low uncer-

tainty, and their slowest response times under conditions of high uncertain-

ty. Analyses of the simple main effects of Distance from the Borderline

were significant for all three displays: Bargraph, F(4,36) - 6.62, p <

.0005; Configural, F(4,36) a 7.10, p < .0005; and Digital, F(4,32) - 7.46, p

< .0005.

The displays appeared not to be affected by uncertainty in the same

way; the Display type by Distance from Borderline interaction was found to

be significant, F(8,104) = 2.32, p < .05. The response times for the Digi-

tal and Bargraph displays appear to be quite similar; indeed, the simple

comparison of the Digital and Bargraph display found no significant differ-

ence between the two displays, F(1,17)) = .02, or an interaction with Dis-

tance from Borderline, F(4, 68) = 1.17. Thus, the source of the interaction

appears to be primarily due to the Configural display being affected differ-

ently by uncertainty relative to the Digital and BRrgraph displays.

The relative change in response times from Experiment 1 to Experiment 2

indicates the effect of biasing the distribution of instances on uncertain-

ty. The Digital display was least affected; response times as a function of
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uncertainty in this experiment were within 311 msecs of the equivalent res-

ponse times obtained in Experiment 1. This was not the case for the Bar-

graph display nor the Configural display; the Bargraph display exhibited the

greatest increase in response times (1160 msecs), while the Configural dis-

play was less affected (978 msecs).

DISCUSSION: Experiment 2

Comparison of the results from Experiment 1 and 2 shows the effect of a

biased distribution of instances. Exposure to more uncertain instances dur-

ing learning appears to have had little effect on the Digital group's abil-

ity to process instances of system data; i.e., the response times to the

Digital display in Experiment 1 were virtually identical to the response

times produced in Experiment 2. These results suggest that a separable rep-

resentation of correlated data is less affected by the distribution of in-

stances of system-state.

The biased distribution had the greatest impact on the Bargraph and

Configural displays. The mean response times at all levels of uncertainty

are considerably slower in Experiment 2 than in Experiment 1. Thus, greater

exposure to instances possessing some degree of uncertainty appears to

either diminish the operator's ability to use the configural properties in

the two displays, or changes the operator's processing strategy. Although

these results may be simply due to the differences between subjects in the

two experiments, the difference is great enough to warrant discussion and to

motivate replication in future research.
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GENERAL CONCLUSIONS

The results of this research demonstrate two very important effects of

uncertainty on the identification of system state and the selection of dis-

plays for multidimensional data. First, there was a positive relation be-

tween uncertainty and the time required to classify an instance of system

data. Second, the superiority of a particular display format varied as a

function of uncertainty. In general, displays possessing configural and

object-like properties were processed faster when uncertainty was low, while

displays possessing separable properties were processed faster when uncer-

tainty was high. Specific deviations from those general findings are dis-

cussed below.

Uncertainty, as defined in this research, is related to the mapping of

system data to system-state categories, and has a significant impact on op-

erator performance. In general, as uncertainty increases, the time required

to classify an instance of system data increases. When uncertainty is low

and an instance of system data is uniquely characteristic of a particular

state category, the categorization process can occur relatively quickly.

Conversely, when uncertainty is high and values of process variables cannot

be mapped to a single system-state category, the categorization process re-

quires more time.

Uncertainty, then, emerres as an important fnctor in display design,

and can be used to determine the relative merits of display formats. When

an instance of system data is unmistakably a member of a particular system

state, displays that possess object-like properties or emergent features

(the Configural and the Bargraph display) can enhance the operator's ability
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to quickly process system data and accurately identify the state of a sys-

tem. The advantage of such displays diminishes, however, as uncertainty

increases or experience with the full range of category membership is not

sufficient (as in Experiment 2).

Once uncertainty reaches a certain point and the diagnosticity of crit-

ical variables diminishes, a more precise presentation of system data (a

separable display) is necessary. Under conditions of high uncertainty, the

Configural display appears to be difficult to decompose, thereby reducing

the operator's ability to detect subtle, but critical, changes in individual

system variables, resulting in an increase in response times. Only the pre-

cise values presented by the Digital display and the separable qualities of

the Bargraph display allowed the subtle variations to become quickly ap-

parent to the operator in these experiments. This is consistent with pre-

vious display research (e.g., Carswell and Wickens, 1987) and studies con-

cerned with focused and divided attention (Kahneman and Triesman, 1984; Tri-

esman and Gelade, 1980). From a practical standpoint, then, a separable

display format appears to enhance the identification of system state when

uncertainty is high.

It would be tempting to conclude that the relative differences in supe-

riority among the three types of displays were due to changes in the salien-

ce of certain perceptual cues in the displhv under conditions of uncertain-

ty. Such a conclusion would be consistent with Pomerantz's emergent featur-

es approach (Pomerantz, Pristach and Carson, 1987), but would ignore other

competing explanations based on a configural approach (Garner, 1980) or the

principle of display proximity proposed by Carswell and Wickens (1987).
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Unfortunately, definitive support for a singular approach to assessing

display formats in a multidimensional classification task is not readily ap-

parent. For instance, Garner (1974) describes configural properties in much

the same terms as Pomerantz's emergent features (Pomerantz, Pristach and

Carson, 1987). Sanderson, Flach, Buttigieg and Casey (1989) have also shown

that an emergent features approach can predict performance in a failure de-

tection task as well as the principle of display proximity proposed by Cars-

well and Wickens. In addition, the way people process displays may be medi-

ated by individual differences; Purcell and Coury (1988) have argued that

operators do not necessarily respond to configural and separable displays in

the same way and may, in fact, adopt a number of different processing strat-

egies.

One can conclude from these experiments that salient perceptual cues in

a display are a function of the underlying statistical properties of a task.

When the contingencies among variables in a task combine in such a way as to

define a specific response (i.e., a state category), there arises an oppor-

tunity for display elements to combine and emerge as useful classification

cues. Even the operators using the Digital display were able to take advan-

tage of certain patterns in the values of process variables to reduce their

response times when uncertainty was low. Thus, uncertainty provides a means

for operationally defining the underlying statistical properties of a task

and revealing the conditions under which elements of a display can enhance

operator performance.

The results from Experiment 2 further demonstrate the effects of uncer-

tainty on operator performance. In that experiment, operators were faced
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with a preponderance of uncertain instances. If the effects of uncertainty

revealed in Experiment 1 were operating in Experiment 2, then one would ex-

pect that a display allowing the use of a separable processing strategy

would be most effective for classifying instances of system state. Further-

more, if one accepts the assumption that the Digital display is processed as

a serial, verbal code, and the assumption that the Bargraph display can be

decomposed and coded in a serial fashion, then one might expect those dis-

plays to enhance classification performance under conditions of high uncer-

tainty. The Digital and Bargraph displays in Experiment 2 produced the best

(as vell as equivalent) performance under conditions of uncertainty, imply-

ing that those displays were being processed in a separable fashion (one

cannot conclude, however, that the Bargraph was being processed as a verbal

code). It is also interesting to note that the Configural display was the

most adversely affected by the distribution of uncertainty, indicating that

the superiority of the Configural display is evident only under conditions

of low uncertainty.

Notice, too, that all three disolay formats produced equivalent classi-

fication accuracy. Although the Configural display produced slightly better

accuracy in Experiment 1, it is unlikely that such a difference would be im-

portant in an operational setting. It is also interesting to note that all

of the operators reached the same level of accuracy by the end of training

sessions, and there was little variation in the rate of learning among dis-

plays. The results indicate that -ufficlent training can effectively elimi-

nate certain differences among displays in the early stages of learning.
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These experiments also demonstrate that the configural and separable

properties of the Bargraph display is related to uncertainty. The superior-

ity of the Bargraph display in Experiment 1 indicates that this type of dis-

play can possess the properties of an object display, and can be used to

enhance classification performance, especially when uncertainty is low.

When uncertainty is high and a separable processing strategy is necessary

for effective performance (as in Experiment 2), then the Bargraph display

can be processed separably and result in better performance than the Config-

ural display and equivalent performance to the Digital display. One can

conclude, then, that the results of this research add to the evidence pre-

sented in Buttigieg, Sanderson and Flach (1988) and Coury and Purcell (1988)

that the Bargraph display can possess both integral and separable proper-

ties. From a display design point of view,'the results also suggest that

the Bargraph display may be a very versatile format and is potentially the

best choice for dilr!J-'- multidimensional, correlated data when the range

of uncertainty is large.

In conclusion, it is important to reiterate the importance of uncer-

tainty, and the impact of such a factor on operatr . performance and the

superiority of a particular display format. In terms of display design, a

principle seems to emerge: when instances of system data are unmistakably a

member of a state category, a displhy allowing configural properties or

emergent features to emerge will enhance the identification of system state.

When uncertainty is high, however, the precise presentation of system data

provided by a separable display is necessary. It is interesting to note

that without the analysis of uncertainty, the differences between displays



Coury, Boulette and Smith
34.

in these experiments would be, for all practical purposes, not signifieant.

Consequently, these results suggest that uncertainty can have a profound

impact on the processing of multidimensional, correlated system data.
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Table 1

Ranges of values for System Variables

System Variable

System 0 M B H
State
1 25-51 49-75 0-26 74-100
2 25-51 49-75 74-100 0-26
3 49-75 25-51 0-26 74-100
4 49-75 25-51 74-100 0-26

Table 2
The Effects of Uncertainty on Classification Accuracy

Experiment 1

Distance from Borderline
Step Size

Border 1 2 3 4 5 6
Digital: .- T 7 77 T 6 796

Bargraph: .97 .96 .95 .96 .97 .96 .96
Configural: .99 .84 .97 .94 .97 .96 .95

Experiment 2

Distance from Borderline
Step Size

Border 1 2 4 6
Digital: W--7 - 9 7

Bargraph: .95 .97 .98 .93 .89
Configural: .99 .98 .95 .91 .93
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Figure Captions

Figures la, lb and Ic. The three types of displays used in Experiments 1
and 2. Figure la shows an instance of system data presented as the Config-
ural display; Figure lb shows an instance of system data presented as the
Digital display; and Figure ic shows an instance of system data presented as
the Bargraph display. In all cases the values of the system variables are
the same.

Figure 2. Mean proportion correct in Experiment 1 for the Bargraph, Digital
and Configural displays as a function of blocks of trials-during Training
and during the Extended Practice sessions.

Figure 3. Mean response times (in msecs) in Experiment 1 for the Bargraph,
Digital and Configural displays as a function of blocks of trials during
Training and during the Extended Practire sessions.

Figure 4. Mean response times from Experiment 1 for the Bargraph, Digital
and Configural display groups as a function of Distance from the Borderline.
'B' is the borderline condition where uncertainty is at the highest level;
the numbers 1 through 6 indicate increasing distance from the borderline,
w.th Step Size 6 representing an instance with the lowest uncertainty.

Figure 5. Mean response times from Experiment 2 for the Bargraph, Digital
and Configural display groups as a function of Distance from the Borderline.
'B' is the borderline condition where uncertainty is at the highest level;
the numbers 1 through 6 indicate increasing distance from the borderline,
with Step Size 6 representing an instance with the lowest uncertainty.

Figure 6. Mean proportion correct in Experiment 2 for the Bargraph, Digital
and Configural displays as a function of blocks of trials during Training
and during the Extended Practice sessions.

Figure 7. Mean response times (in msecs) in Experiment 2 for the Bargraph,
Digital and Configural displays as a function of blocks of trials during
Training and during the Extended Practice sessions.
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Fig. 2a: Training
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Fig. 2b: Extended Practice
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Fig. 3a: Training
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Fig. 3b: Extended Practice
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Fig. 4
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Fig. 5
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Fig. 6a: Training
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Fig. 6b: Extended Practice
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Fig. 7a: Training
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Fig. 7b: Extended Practice
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